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1. Introduction

A primary objective in computer vision research is to construct image

understanding systems (IUS's) which can analyze images based on object

models. Usually, an IUS analyzes images by constructing interpretations in

terms of the object models given to the IUS. Interpretation refers to the map-

ping between objects (e.g., houses, roads) in the object model and image

structures (e.g., regions, lines, points) in the image. During the analysis, an

1US needs to perform the following two types of tasks:

- segmentation : the task of grouping pixels together to construct
image structures that can be associated with objects in the given
model.

- interpretation : the task of constructing mappings between image
structures and objects.

Segmentation is practical when sufficient knowledge is available about the

image to be processed and the image structures to be computed. The base of

knowledge increases as the interpretation process develops, leading to more

constrained and therefore more reliable segmentation.

Many IUS's were constructed in the late 1970's ( [Barr8l], [Ball82I,

[Binf821 [Ball821.) Most systems integrate segmentation and interpretation

using one of the following types of analysis.

"4' -1"



1) Bottom-up analysis: the image structures are extracted from the
image, and are interpreted as instances of the objects in the model.
For example, when a large rectangular region is extracted, inter-
pret it as a house.

2) Top-down analysis: the appearance of the object is first deter-
mined, and the associated image structures are extracted. For ex-
ample, suppose an IUS wants to find a house; the RJS invokes the
house model and establishes the descriptions of the specific image
structures to be extracted from the image.

It is generally accepted that image understanding systems should incorporate

both bottom-up and top-down analyses. Some systems use only one type of

analysis. MSYS [Barr76J developed by Barrow and Tenenbaum used bottom-

up analysis. Image structures are first segmented from the image. A set of

initial labels are assigned to these image structures (basect on height, homo-

geneity, etc.) Then, geometric constraints between labels are used to filter out

inconsistent labelings. Bolles [Boll76J, on the other hand, used top-down

analysis. In his system , a goal is first constructed. The system then matches

the goal, which is represented as a template, with the image. A similar

approach is used in Garvey's [Garv76] system. Other systems (Hanson, Rise-

man [Hans78]; Matsuyama [Naga8O]) incorporate both types of analysis but

use ad hoc rules to determine which type of analysis is to be used at what

stage during the analysis. Such systems often require a large set of domain

dependent cantrol knowledge to direct the analysis of the I ntS.
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It is the goal of this research to develop a robust control strategy for con-

structing image understanding systems, thus eliminating the need to use large

amounts of domain specific control knowledge in specific applications. In this

paper, we propose a general framework which enables IUS's to integrate both

bottom-up and top-down analyses into a single flexible reasoning process. We

construct an image understanding system, SIGMA, based on this framework

and provide demonstrations of its performance on images of a suburban hous-

ing development.

1.1. Integration of hypotheses

Considering the following proposition:

If a structure of type x is present in the scene having certain spa-
tial properties, then there should exist a structure of type y having
certain properties in the image.

It is often the case that what is known about x is not sufficient to completely

characterize y (i.e., we might be able to predict its size and color, but perhaps

not its orientation). In addition, there might be many x's, each predicting the

occurrence of y, but each contributing different constraints on the properties

of y.

For example, by locating a house in the image, one may predict the

occurrences of other objects, e.g., neighboring houses. Furthermore, the

discovery of a rectangular homogeneous region in the image may also generate

7-3-



a prediction of a house. It is usually the case (depending on the object model)

that each of these predictions provides some "cues" about the occurrence of a

house and it is the integration of all these cues that may characterizes the

occurrence of a house adequately enough to easily recognize it.

Let us call the predictions about the occurrences of objects in the image

hypotheses. Suppose several hypotheses, which may be independently gen-

erated, are predictions about objects at the same location in the image. It is

reasonable to assume that these hypotheses are predictions about the "same"

object, although each may only constrain some subset of the properties of the

object. By integrating these hypotheses, an IUS could construct a more com-

plete description of the object and use it to direct a more effective and

informed analysis.

1.2. An overview of the SIGMA image understanding system

Figure 1-2 shows the system architecture of the SIGMA image under-

standing system. The user provides object models to SIGMA, and the results

of the analysis are available to the user through a query-answering module.

The image is first segmented by a general purpose low level vision system

(LLVS). The segmentation results are recorded in the iconic/symbolic data-

base. The high level vision system (HLVS) uses the object model either to

interpret image structures already extracted or to direct the low level

processes to search for image structures not yet discovered. During the

-4-
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analysis, the HLVS incrementally constructs an interpretation network for the

input image. A "goal" is given to the query-answering module (QAM). At

the end of each analysis iteration, the QAM is activated and "matches" the

current status of the analysis with the goal. This construction process contin-

u s until the "goal" is accomplished (i.e., a successful match between the

current status of the analysis and the goal) or no more interpretations can be

constructed. At this stage, the QAM provides the current status of the

analysis. In the following subsections, we present each module of SIGMA in

more detail.

1.2.1. The low level vision system

In SIGMA, the LLVS is formulated as a domain-independent goal-

directed segmentation system. A goal, which is described by a list of con-

straints on the image structures to be computed, is given to the LLVS. The

LLVS uses general segmentation techniques to extract such image structures.

Other systems have been constructed to perform goal-directed segmentation -

e.g., Selfridge [Self82] and Nazif & Levine [Nazi84].

Our approach differs from the approaches taken in these systems. We

assume that many specialized methods are needed to extract image features

from the image. An LILVS needs to select, from a pool, methods that best suit

the task. Furthermore, new methods are frequently developed that can aug-

ment or replace the methods currently used by the LLVS. It is important to

2. 2



design an LLVS so that adding methods to it is easy.

Our LLVS is based on a select-and-schedule strategy. When the LLVS is

asked to verify some hypothesis, it first selects those methods which are appli-

cable by matching the hypothesis against a decision table. Then, the LLVS

schedules the selected methods according to their potential. If one method

fails to verify the hypothesis, the next method will be tried until the

hypothesis is verified or until all methods have been tried and have failed.

This approach is similar to the "blackboard" method [Davi77] and the "con-

tract net" idea [Smit78]; but the implementation here is simpler. For a

detailed discussion of the LLVS, see [Hwan84I.

1.2.2. The high level vision system

The high level vision system (HLVS) uses object models to interpret data

recorded in the iconic/symbolic database and construct an interpretation net-

work. The HLVS uses the integration of hypotheses principle to direct

analysis. This is implemented by the following reasoning steps.

1) Hypothesis generation: the HLVS generates hypotheses about
occurrences of objects in the image.

2) Hypothesis integration: the HLVS clusters "related" hypotheses
together.

3) Hypothesis abstraction: the HLVS computes a "composite hypothesis"
for each cluster.

4) Hypothesis verification: the HLVS selects hypotheses and verifies them
by computing values for those attributes which are not completely

"" -6-
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constrained.

The HLVS performs the reasoning iteratively. At the end of each itera-

tion, the HLVS checks whether the "goal" is accomplished by activating the

QAM. If the goal is accomplished or no more interpretations can be con-

structed, the construction process terminates and the status of the analysis is

available through the QAM.

1.2.3. Query-answering module

Potentially, SIGMA constructs all possible interpretations for an image.

However, SIGMA needs to select, among many interpretations, a good one as

its conclusion. Instead of finding a "best interpretation", we model this selec-

tion process as a database query answering process. A program (QAM) was

developed to answer simple queries about the interpretation network and to

display the associated image structures.

The goal of the analysis is provided to the QAM as a query. Whenever

the QAM is activated (by the HLVS), it matches the goal with the interpreta-

tions already constructed. If any interpretation that satisfies the goal is

found, the QAM enters into an answer mode and provides a query-answering

capability for selecting "good interpretations" and displaying the explanations

for these interpretations.
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1.3. Outline of the paper

We first present the knowledge representation paradigm used in SIGMA.

In Section 3, we discuss a framework for performing hypothesis integration

and abstraction. This is followed by a detailed description of the system con-

structed based on this framewcrk. Conclusions are presented in the final sec-

tion.
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2. Representation of object models

2.1. What to represent?

The knowledge representation formalism determines a general framework

for organizing the necessary knowledge into a knowledge base and supports a

powerful inference mechanism for guiding the recognition of a specific scene.

An appropriate knowledge representation tool can often simplify the task of

transferring problem domain expert knowledge into knowledge bases in com-

puter systems.

Consider the following house model:

A house is "rectangular" or "L-shaped"; its area is larger than
1000 square feet but no larger than 2500 square feet. A house usu-
ally belongs to a group of houses which are on the same side of a
road. Roads can be found near the house. Usually, the road is
parallel or perpendicular to the house and a driveway connects the
road to the house.

Based on how an IUS uses such a model to locate houses in a given image, one

can categorize this scene knowledge into the following classes.

1) What to look for. This class of knowledge describes the appearances of
objects (e.g., the type of image structures associlated with objects.) In the
house example, the appearance of the house is a homogeneous compact rec-
tangular region. To locate houses, an US segments the input image and
identifies as houses those regions which are rectangular and compact and
whose sizes are between 1000 and 2500 square feet.

2) Where to look. This class of knowledge includes the geometric and topolog-
ical relations between objects. The knowledge base might, for example,
specify (based on connectivity, relative orientation, etc.) relations between

.'.9-
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'riveways, houses, and roads. An IUS might, if one of these objects is
discovered (say a driveway), use this relation to initiate and constrain the
search for other objects (e.g., a connected house and road) not yet discovered.
An ITS might also use such relations to examine whether a house, a driveway,
or a road already discovered satisfy the required relations.

3) When to look. This class of knowledge describes strategies regarding the
application and confirmation of relations. One the one hand, we often want to
postpone applying a specific piece of relational knowledge until sufficient
information has been obtained to strongly suggest that the relation may be
applicable. On the other hand, since the confirmation process often involves
the searching of image structures associated with other objects, we might also
want to postpone the confirmation of a specific relation until a sufficient
description of the object to be searched is collected. For example, when the
IUS generates a house hypothesis, instead of searching for an image structure
associated with it immediately, the IUS might postpone the search until a
sufficient description of the house (e.g., shape, intensity, etc.) is available.

A principal objective of this research is to develop a representation

scheme which simplifies the task of capturing domain knowledge as a

knowledge base for IUS's. This section presents the knowledge representation

scheme used in the SIGMA system. Note that the scene model is used mainly

by the HLVS (High Level Vision System) module in SIGMA.

2.2. Basic representation primitives

Our representation formalism is based on frame system theory [Mins75],

semantic networks [Wino75] [Hend7T], and an object oriented problem solving

style [Stee7g] [Wein80 [Gold83]. In SIGMA, object models are represented as

a graph structure of nodes and arcs. Objects are described by "frames" (nodes

in the graph structure) while relations between these objects are described by

"rules" and "links" (arcs in the graph structure). In such a formalism, domain

-10-



knowledge is built around a set of objects and a set of operations that can be

applied to them.

The basic entities of the representation are called frames and are used to

model abstract objects in the problem domain such as "house" or "road".

Each frame may have many associated descriptions that are defined by slots.

Slots are similar to "property lists" in LISP. Each slot is a list which contains

an indicator (i.e., name) and a value.

In addition to slots where values are recorded, we can also associate with

frames all the knowledge which is used to compute values of slots. We

represent this type of knowledge as rules.

Rules used in this context are procedural-i.e., the knowledge about how

to compute values of slots is encoded in programs. As mentioned above, these

"programs" are written using an object-oriented programming style.

Objects in the scene domain are often structured into hierarchies. It is

often natural and convenient to preserve these hierarchies when we construct

the scene model. Links are used to describe the hierarchical relations between

objects.

One object hierarchy often used is the generalization/specialization

hierarchy; CAN-BE and AO links are employed to describe it. Link CAN-

BE describes a frame and its specializations while link AKO describes a

frame and its generalizations.

-11-



Properties are inherited through the AKO link. This usage is similar to

the "property inheritance" in semantic networks ( [Moor7g], [Nils80].) All the

knowledge recorded in frames that are linked to a father frame by the AKO

link is inherited by that frame. For example, both the RECTANGULAR-

HOUSE and the L-SHAPED-HOUSE have centroid, shape-description, front-

of-house, and connecting-driveway slots. Also, both the RECTANGULAR-

HOUSE and the L-SHAPED-HOUSE can use rule Fdr1VeW- to compute the

connecting driveway.

Often, the HLVS needs to reason across the CAN-BE link. For example,

suppose the HLVS needs to compute the shape of a house. The HLVS is not

able to do the computation since there is no such rule recorded in the HOUSE

frame. Instead, the HLVS needs to reason about what specialization to choose,

i.e., RECTANGULAR-HOUSE or L-SHAPED-HOUSE. The strategies for this

type of reasoning are called specialization strategies and are encoded as rules

and recorded in frames. Attaching such search strategies using CAN-BE links

is similar to the process of "plan elaboration" in Garvey's system [Garv76]

As an example, suppose that there are two type of houses, rectangular

and L-shaped, in community A. Every house has a driveway. However, each

type of house has a different appearance. Suppose Frectanyle is a rule which

computes the shape description of a rectangular house, and Fdriveway is

another rule which finds the driveway connecting to a rectangular house. Rule

Fdriveway computes the driveway of a house. We can write the house model as

-12-
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shown in Figure 2-1. In this model, the HOUSE frame is a generalization of

the L-SHAPED-HOUSE frame and the RECTANGULAR-HOUSE frame while

the L-SHAPED-HOUSE frame and RECTANGULAR-HOUSE frame are spe-

cializations of the HOUSE frame. Their hierarchical relations are shown in

Figure 2-2.

2.3. Instantiation of a frame

Frames are the prototypes of objects. The SIGMA system uses frames as

models to construct interpretations of the image by making instances of

frames. An instance is a copy of a frame. The process of making instances is

called instantiation. At instantiation, values can be assigned to slots. These

values may be the "defaults" (specified in the frame definition) or may be

computed using rules. Since all instances are recorded in the iconic/symbolic

database in the HLVS as basic database entities, we use the term Database

Entities (DE's) interchangeably with the term "instances" in the rest of the

paper.

An important property of an object is its appearance. During the

analysis, the HLVS needs to direct the LLVS (Low Level Vision System) to

process the image and locate image structures which are associated with

objects. Some objects' appearances are defined in terms of image structures

that can be directly computed by the LLVS. Those frames which define such

objects are called primitive frames. Frames which are not primitive are called

-13-



non-primitive frames.

Depending on what is known about the appearance of an instance, an

instance can be in one of the following two states: verified, which indicates

that the appearance of the instance is some already located image structure or

is a function of the appearances of verified instances; and hypothetical, which

indicates that the appearance of the instance has not been determined.

In addition to the appearances of objects, the HLVS also uses the iconic

description of a frame during its reasoning. The iconic description specifies an

area in the image and its definition is specified by a rule. During the

hypotheses integration, the HLVS uses the iconic descriptions to reason

whether two DE's are related (explained in Section 3). The use of iconic

description in SIGMA is similar to the use of "functional areas" in Mckeown's

SPAM aerial interpretation system [McKe84].

The values recorded in instances may be updated during the analysis.

Every instance has a special numerical value which is called the strength of

the instance. The method used to compute strength is described as a pro-

cedure, say Ptrength, in the frame's definition. Upon instantiation, a strength

is computed for each instance. Whenever the values recorded in an instance

are updated, the strength of the instance is also recomputed by reevaluating

P8trength. The HLVS uses such values to control its focus of attention mechan-

ism.

-14-
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Suppose one defines the appearance of a house (house frame) as a rec-

tangular compact region and a row of houses (house-group frame) as the

union of the appearances of all the houses in a house-group. Then the house

frame is primitive while the house-group frame is non-primitive. In SIGMA,

in order to locate a house-group, the HLVS first generates hypotheses about

the location of member houses and then direct the LLVS to locate each house

individually.

Now, suppose that the LLVS located a rectangular compact region, Ro.

The HLVS will generate a house instance, H1, whose appearance is R0 and

mark it as a verified instance. However, suppose the HLVS further generates

neighboring house predictions for H, say H2 and H3. Both H2 and H3 are

hypothetical instances since the appearances of these instances have not yet

been determined from the image.

2.4. Representing relations between objects

A major portion of the scene domain knowledge involves relations

between objects. However, these relations must be represented in forms that

can be directly used by the HLVS. Our approach is influenced by production

rules [Davi77] and the planning paradigm used in Garvey's vision system

[Garv76].

Suppose we have the following house-road relation:

• -15-
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A road roado is along a house houseo if the predicate along
(roado,houseo) is true.

There are at least two potential uses of this relation by the HLVS:

- HLVS uses the relation to check whether road roado is along
house houseo.

- HLVS uses the relation to direct a search for a road along house
houseo .

In order to support multiple uses of a relation by the HLVS, we use a

test-hypothesize-and-act strategy to describe relations. A binary relation

REL(0 1,0 2) between objects 01 and 02 is represented using two functional

descriptions:

01 = F(0 2 ) and 0 2 = G(0 1 ).

Program F computes the object expected by object 02 and is recorded in

object frame 0, as a rule. Program G computes the object expected by object

01 and is recorded in object frame 01 as a rule also.

As noted earlier, control knowledge for the use of relations and control

knowledge for directing search are both required by the HLVS. We represent

such knowledge as predicates associated with rules.

We present our rule representation scheme as follows:

°. -16-



A rule is composed of three parts:

< control-condition>
< hypothesis >
< action >.

<Contro-condition> is a predicate. It indicates when a rule can potentially

be applied. <Hypothesis> specifies the description of a desired object that is

created when the <control-condition> evaluates to true. <Action>

describes the code to be evaluated if <hypothesis> is verified. In general,

<action> can add facts to or delete facts from the iconic/symbolic database

of the HLVS.

The house-road relation can be written as a rule in the HOUSE frame as

follows (Figure 2-3):

To compute a road along house houseo, we always generate a hy-
pothesis road, with the following slot values:

road.orientation:
greater than (houseo.front-of-house + 80 degrees) but less than
(house0.front-of-house 100 degrees).

road.width:
greater than (housco.width * 0.3) but less than (houseo.width *

0.5).
road.centroid:

resides within REGION(houseo.centroid + T(houseo.front-of-
house)).

T(.) is a function. If the hypothesis road. is verified by some road
roado, then road roado is along house houseo.
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Figure 2-4 shows a model for suburban housing developments. Objects

are described by nodes (square) and relations are described by arcs. In this

model, Rectangle and Picture-Boundary are the "primitive frames".

The HLVS makes use of the different parts of a rule to perform its rea-

soning. We discuss this in Section 4.

-18-



3. Integration of hypotheses

3.1. Introduction

Consider a binary relation REL(0 1,0 2) betweet two classes of objects,

01 and 02. This relation can be used as a constraint to recognize objects from

these two classes by first extracting image structures which satisfy the

specified appearances of 01 and 0, and then checking that the relation is

satisfied by these candidate objects (Figure 3-1). In this bottom-up recognition

scheme, analysis based on relations cannot be performed until image struc-

tures corresponding to objects are extracted.

In general, however, some of the correct image structures fail to be

extracted by the initial image segmentation. So one must, additionally, incor-

porate top-down control to find image structures missed by the initial segmen-

tation. Such top-down processes use relations to predict the locations of

missing objects, as in the system described by (Garvey [Garv76], Selfridge

[Self82])

As noted above, the use of relations is very different in the two analysis

processes : consistency verification in bottom-up analysis and hypothesis gen-

eration in top-down analysis. An important characteristic of our hypothesis

integration method is that it enables the system to integrate both bottom-up

and top-down processes into a single flexible spatial reasoning process.
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As will be described in Section 4, the HLVS first establishes local environ-

ments. Then, either bottom-up or top-down processes are activated depending

on the nature of the local environment. The following sections describe the

concepts and characteristics of this process.

3.2. The representation of database entities

All instances, hypothetical or verified, generated by the HLVS are

recorded in a database. In the rest of this section, we use the term database

entity (DE) to refer to instances recorded in the database. In addition, we use

the term hypothesis to refer to instances in the hypothetical state.

The description of each DE consists of two parts. One part is the iconic

description. This description is a region in the image which indicates where

the DE may be located. It is generated by the rule which specifies the iconic

description of the frame used to generate the DE.

The second part is the symbolic description, which includes the values

filled into the slots of the DE, and the set of constraints imposed on these

values. These constraints are represented by a set of linear inequalities in one

variable (the slot name).

3.3. Consistency between a pair of DE's

"Related" DE's are integrated and analyzed together. In SIGNLJ. "relat-

edness" between DE's is defined in terms of "consistency" between pairs of

DE's. A pair of DE's, DE, and DE2 , are said to be consistent if the following
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conditions hold:

1) The iconic descriptions of the DE's must intersect. It is also possible to
impose some requirements on the size and shape of the area of intersection.

2) The DE's are compatible. Let OP be the intersection arising from two
DE's, and let F1 and F2 denote the frames from which DE1 and DE2 were
copied. DE, and DE 2 are said to be compatible if F1 and F2 are linked by
CAN-BE or AKO links. Otherwise, DE1 and DE2 are said to be incompatible.
This will be explained in more detail in Section 3.5.

3) The constraints imposed on the attributes of the DE's must be satisfiable.
Every DE has associated with it a set of linear inequalities in one variable
that constrain the permissible values of the DE's attributes. A simple con-
straint manipulation system is used to check the consistency between the sets
of inequalities by generating the solution space (also represented by inequali-
ties) to the intersection of those sets. If this solution space is non-empty, then
the constraints are consistent.

3.4. Formation of maximum consistent situations

Consistent DE's are combined into situations. These DE's are said to

participate in the formation of a situation. The P-set of a situation is its set

of participating DE's. Situation S, is less than situation Sb if the P-set of Sa

is a subset of the P-set of Sb. This ordering is used to structure all the situa-

tions into a situation lattice. Note that a single DE is also e, situation. The

rest of this section presents the algorithm used to form situations.

Two DE's are said to be 2-consistent if they are consistent. In general, a

set of DE's is said to be n-consistent if every possible subset of (n-1) of the

DE's is (n-1)-consistent. Clearly, a set of DE's is n-consistent if and only if

all possible pairs of DE's in the set are 2-consistent.
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When a DE, say DEnw, is inserted into the iconic/symbolic database, the

current situation-lattice is updated by first computing the set, U, that con-

tains all DE's whose iconic descriptions intersect with the iconic description of

DEnew. Then, we iteratively compute all lists of n-consistent DE's for those

DE's in the set U. Each such list of n-consistent DE's forms the P-set of some

situation. Algorithm 3-1 describes this process.

The maximum consistent situations are those situations which are the

roots of the situation lattice.

Algorithm 3-1 : Updating the Situation Lattice

Step 1: Suppose the newly inserted entity is DEew. Compute the set U.
N=2.

Step 2: Compute the set, R, of all the N-consistent DE's for the DE's in
U. Remove any which do not contain DEn,,

Step 3: If R is empty, then exit. Otherwise, insert all the elements of R
into the situation-lattice.

Step 4: Increment N by 1. Construct all the pairs for elements in R.
Represent each pair by the union of the members in each ele-
ment. Remove any which is not N-consistent or does not contain
DEnew. Set R to be the set of resulting N-consistent DE's.

Step 5: Go to step 3.

-22-
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Figure 3-2 shows an example of how the situation lattice is updated when

a DE is inserted. Each DE is represented by a letter. A situation is

represented by all the DE's in its P-set. Figure 3-2(a) shows the situation lat-

tice before the insertion of DEE and the iconic descriptions of the DE's. Sup-

pose that the new DE, DEE, is consistent with DEA, DEB and DED. The set'

U would then include

DEA, DEB, DEc, DED, DEE.

The first time that step 3 is evaluated, set R contains the following situations:

DEAE, DEBE, DEDE.

The second time that step 3 is evaluated, set R contains the following situa-

tion:

DEADE

The updating stops at the third iteration. Figure 3-2(b) shows the situation

lattice after the updating process.

When a DE, say DEremove, is being removed from the iconic/symbolic

database, the current situation lattice must also be updated. This can be done

simply by removing all the situations in the situation lattice which are larger

than DEremove.
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Suppose, for example, that DEA is removed from the situation described

in Figure 3-2(b). Figure 3-3 shows the resulting situation lattice.

It is possible that the number of situations in the situation lattice may

grow exponentially. In practice, this does not happen since the number of

participants in a situation is usually quite small, e.g., two or three.

3.5. Constructing the composite hypothesis

A situation is a collection of consistent DE's. The HLVS selects a situa-

tion and proposes a composite hypothesis which "summarizes" the constraints

imposed on the attributes of all the participating DE's. The strategy for com-

puting the composite hypothesis is specified by a procedure recorded in the

frame's definition. (Note that two DE's are consistent only if they are

instances of the same frame or instances of frames in the same

generalization/specialization hierarchy. Therefore, all the participants in a

situation must be instances of frames in the same generalization/speciallzation

hierarchy. The procedure for computing the composite hypothesis is recorded

in the most general frame.) This section presents some strategies for comput-

ing the composite hypothesis.

One simple strategy is to use the solution sets of all the constraints

imposed on the attributes of all the participating DE's (explained in Section

3.4) as the constraint set of the composite hypothesis. The target object of

the composite hypothesis is the most specialized object expected by all the
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DE's.

Suppose that the constraint set of DE1 is

target object = HOUSE,
house.centroid = (100,130),
230 < house.area < 300

while the constraint set of DE2 is

target object = RECTANGULAR-HOUSE,
house.centroid = (100,130),
250 < house.area < 320,
house.region-contrast > 3.

Using this method, we generate the composite hypothesis for DE1 and DE2 as

follows:

target object - RECTANGULAR-HOUSE,
house.centroid = (100,130),
250 < house.area < 300,
house.region-contrast > 3.

Another strategy is to take the union of all the solution sets of the constraints

imposed on the attributes of all the participating DE's. Suppose, for example,

that two hypotheses, DE 1 and DE 2, about a road have constraints on their

starting and ending points as follows:

-25-
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hypothesis DEI,
target object = road,

road.end-points = (100,100),(100,150)1.

hypothesis DE2 ,
target object = road,

road.end-points ={(100, 125),(100,180)).

We may want to construct a road hypothesis whose constraint set is the union

of these constraints on DE, and DE2:

target object = road,

road.end-points = (100,100),(100,180)1.
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4. An implementation of SIGMA

4.1. Overview

The goal of SIGMA is to segment the image into image structures which

correspond to the objects specified in the object model. Section 1.3 outlined

the architecture of the SIGMA image understanding system. This section

describes its implementation.

Figure 4-1 illustrates the different stages of the control of SIGMA.

SIGMA first directs the LLVS to perform an initial segmentation of the

image. A set of image structures are computed at this stage. At the second

stage, the HLVS constructs partial interpretations based on the results of the

initial segmentation. However, during the construction, the HLVS may direct

the LLVS to compute more image structures. When all construction activities

finish, SIGMA provides a query-answering module for selecting "good

interpretations" and displaying the reasoning paths used to derive these

interpretations. During the entire analysis, SIGMA maintains a database

(the iconic/symbolic database) to record all the intermediate results gen-

erated at each stage.

The rest of this section discusses the implementation of SIGMA.

4.2. Description of goals

The Query-Answering Module (QAM) is activated by the HLVS at the

end of each reasoning iteration. The goal of SIGMA is described as a query to
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QAM. QAM matches the query with the interpretations already constructed.

If any interpretation matches the goal, QAM enters into an answer mode and

provides an interactive query-answering capability.

Suppose, for example, that the goal is to locate any road whose length is

longer than 300 feet in the image and has at least two houses along it. This

goal can be represented by the following query:

road(x) and (x.length > 300 feet) and (x.number-of-houses >2).

During the interpretation stage, whenever a road instance is constructed

whose length is longer than 300 feet and has at least two houses along it (i.e.,

x is bound to some interpretation constructed by the HLVS), QAM will enter

an answer mode and make the specific road instance that satisfies the goal

available to an interactive program. One can use this program to traverse the

interpretation network (the network which is constructed by the I-LVS during

the interpretation process), and display symbolic and iconic descriptions of the

interpretations constructed.

4.3. The initial segmentation

SIGMIA starts its processing by directing the LLVS to extract image

structures. The schematic diagram of the initial segmentation process is

shown in Figure 4-2. The set, -, which contains a list of hypotheses about

primitive objects, is used to describe the goal of the initial segmentation pro-
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cess.

The Initial Segmentation Controller (ISC) sequentially selects hypotheses

from the set I and directs the LLVS to extract image primitives which satisfy

these hypotheses. For each image primitive extracted, the ISC makes an

instance of the frame of which the hypothesis is a copy, and then inserts the

instance created into the iconic/symbolic database.

Suppose, for example, that we want to first extract all regions which

might correspond to house groups and roads in the image. A set which con-

tains the following hypotheses can be used as the set I:

hypothesis 1:/* extract compact and bright rectangles */
target object -- rectangle,
in-window = whole image,
rectangle.elongatedness < 10,
rectangle.compactness < 18,
rectangle.region-contrast > 3,
180 < rectangle.area-of < 400.

hypothesis 2:/* extract elongated rectangles */
target object = rectangle,
in-window = whole image,
7 < rectangle.width < 20,
rectangle.elongatedness > 10,
rectangle.length > 10,
rectangle.compactness > 18,
rectangle.region-contrast > 3.

The set I for the initial segmentation could, in principle, be computed

from the scene model, since the appearances of objects are described in terms

of the appearances of "primitive frames". The ISC could choose those primi-
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tive frames whose appearances are salient (i.e., they can be located "easily"

by the LLVS) as the I-set. However, this was not implemented in SIGMA; the

I-set is simply given as part of the scene model.

4.4. Construction of partial interpretations

The schematic diagram of the processing involved in constructing partial

interpretations is shown in Figure 4-3. The HLVS iterates the following steps

in this stage:

(1) hypothesis generation,
(2) focus of attention,
(3) composite hypothesis construction,
(4) solution generation,
(5) action scheduling.

Detailed discussions of each step are presented in the following subsections.

4.4.1. Hypothesis generation

For each DE (hypothetical or verified) recorded in the iconic/symbolic

database, the Iconic/Symbolic Database Manager (ISDM) evaluates all the

rules that are "applicable".

Suppose I0 is an instance of frame F. For each rule, say Rz, defined in

frame F, the ISDM evaluates the <control-condition> part of rule R.. If the

evaluation result is true, the ISDM performs the following tasks:
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(1) Compute the <hypothesis> part of rule R=, and insert the
computed hypothesis into the iconic/symbolic database.

(2) Insert the <action> part of rule Rx into the Action List which
records all the actions waiting to be evaluated.

The actions in the action list are called delayed actions. For each

delayed action, there is an associated hypothesis (computed at step 1)

recorded in the iconic/symbolic database. Such a hypothesis is called the

cause of delay of the action.

Note that for rules whose <hypothesis> part is nil, the <action> part

is not put into the action list. Instead, the <action> is evaluated immedi-

ately. At the hypothesis generation stage, the ISDM evaluates, for each

instance in the iconic/symbolic database, the <control condition> of every

rule in the associated frame definition. (This strategy is not efficient. A more

efficient strategy would evaluate only those <control condition> s whose

values are affected by changes made to the attributes of the instance since the

last time the <control condition>s were evaluated.)

The DE's in the iconic/symbolic database are combined into situations.

All the situations are structured into the situation lattice. The Situation Lat-

tice Database Manager (SLDM) updates the situation lattice whenever DE's

are inserted into or removed from the iconic/symbolic database. The algo-

rithm (3-1) for updating the situation lattice was presented in Section 3.4.
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"Identical instances" may be created during the construction process of

the HLVS. Two instances are identical if all the values filled in the slots of

those instances are identical. It is necessary to detect identical instances and

replace them by a single instance. This process is called unification of

instances, and is performed during construction of composite hypotheses.

For example, a house group instance containing house instances H0 and

H, can be constructed from instance H by first constructing a house group

instance, say HGo, which contains H0 , and then expanding HGo to include

house instance H (see Figure 4-4(a)). An identical house group instance HG

can also be constructed from house instance H (see Figure 4-4(b)).

One natural way to detect identical instances is to examine the P-set of a

situation. For each situation selected by the focus of attention mechanism, the

HLVS examines the instances in the P-set of the situation to find sets of

identical instances.

The HLVS unifies identical instances as follows. All identical instances

are first collected in a set, L. Then the HLVS selects one instance from the set

L, say I0. For each instance I. E L, the HLVS replaces every reference to I, in

the iconic/symbolic database by a reference to instance I0 .

Figure 4-5 illustrates the result of unifying HGo and HG (assuming the

HLVS chooses HGo as Io).
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4.4.2. Focus of attention

The focus of attention mechanism selects a situation with greatest

strength from the situation lattice. If there are several situations with equal

strength, the HLVS selects one arbitrarily.

For example, Figure 4-6 shows a situation lattice. There are two maximal

consistent situations that can be selected (both situations have strength = 3).

The HLVS can select either one (i.e., N 0, or N11 ).

The situation selected by the focus of attention mechanism is given to

the Composite Hypothesis Constructor to construct the composite hypothesis.

The construction of composite hypotheses was discussed in Section 3.5.

4.4.3. Solution generation

The Solution Generator (SG) computes solutions for the composite

hypothesis. The SG obtains/constructs instances to satisfy the composite

hypothesis by one of the methods discussed in the following paragraphs.

First, the SG may discover an existing instance in the iconic/symbolic

database that satisfies the composite hypothesis. In this case, the SG returns

the instance found as the solution. In general, it may be necessary to search

the iconic/symbolic database to find some instance which satisfies the compo-

site hypothesis. However, since the composite hypothesis is constructed by

taking the solution space of a)l the constraints imposed on the DE's partici-

pating in the situation (see Section 3.5), to find an existing instance which
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satisfies the composite hypothesis, the SG needs only examine the P-set of the

selected situation and use any instance in the P-set as the solution.

Suppose the SG cannot find any instance in the iconic/symbolic database

that satisfies the composite hypothesis. There are two possibilities:

(1) the target object of the composite hypothesis is a primitive ob-
ject (such hypotheses are called primitive hypotheses);

(2) the target object of the composite hypothesis is not a primitive
object (such hypotheses are called non-primitive hypotheses).

In the first case, the SG first directs a top-down segmentation by provid-

ing to the LLVS the descriptions of the composite hypothesis. Then the SG

creates instances based on the results of the LLVS. Finally, the instances

created (if any) are returned as a solution.

In the second case, no top-down segmentation is performed. The SG

simply returns the composite hypothesis as the solution.

4.4.4. Action scheduling

The Action Scheduler (AS) schedules the actions in the action list using

the solution provided by the SG. Three possible types of solutions may be

provided:
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(1) nil,i.e., the hypothesis cannot be verified,
(2) an instance,
(3) a composite hypothesis.

In both the first and the second cases, the AS selects those <action>s in

the action list whose "causes of delay" are in the P-set of the selected situa-

tion. Let the solution be 10, the actions selected be A1,.. A., and their

causes of delay be H1, ,,H, respectively. The AS performs the selected

actions sequentially:

(a) replace all the references to Hi in action A, by 10,

(b) evaluate Ai,

(c) remove Hi from the iconic/symbolic database, or update the
attributes of Hi (we will discuss this in more detail in Section 4.5).

In the third case, the AS marks the composite hypothesis, say CHO, as

partially processed and inserts it into the iconic/symbolic database. The AS

also marks the currently selected situation, say So, as unconcluded. The

hypothesis CHO is said to be derived from the situation S0 . We will present a

more detailed discussion of the effects of such processing in Section 4.4.4.1.

Table 4-1 summarizes the terms defined in the previous paragraphs.
C.

The removal of hypotheses from the iconic/symbolic database has the

following side effects:

(1) If a hypothesis, say H0 , is removed from the database, then all the
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Table 4-1. Glossary.

Primitive hypothesis:
A hypothesis whose target object is a primitive object.

Non-primitive hypothesis:
A hypothesis whose target object is a non-primitive object.

Unconcluded situation:
A situation which was selected by the focus of attention mechanism,
but for which the Solution Generator cannot yet compute a solution.

Partially processed hypothesis:
A composite hypothesis, recorded in the iconic/symbolic database,
which is computed for some unconcluded situation.

situations in the situation lattice whose P-sets contain H are also removed
from the situation lattice.

(2) If an unconcluded situation is removed from the situation lattice in (1),
then the hypotheses which were derived from the situation are also removed
from the iconic/symbolic database.

The updating of attributes of hypotheses is implemented by removing the

original hypothesis and inserting a new hypothesis.

When all the actions selected are evaluated, the action scheduler ter-

minates, and the next cycle of hypothesis construction begins.
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4.4.4.1. Computing solutions for a non-primitive composite

hypothesis

The SG does not directly propose solutions for a non-primitive composite

hypothesis. Instead, a top-down parsing approach is used to compute the

solution. Suppose the composite hypothesis constructed for a situation , say

S0, is CH. To compute the solution for CH,, we first generate a set of

hypotheses Hi,1 <i<n and compute the solution for each Hj. The solution for

CH, can be computed from the solutions for Hi,1 <i< n.

To support such an approach, we associate with each non-primitive

frame a decomposition strategy (represented as a rule) which describes how to

generate a new set of hypotheses to be verified, and how to compute a solu-

tion for the non-primitive frame using the solutions for the generated

hypotheses.

For example, the rule for the decomposition strategy of a

RECTANGULAR-HOUSE frame is

Rule Rfirst.orderproperties.
< control-condition> : true,
<hypothesis> :

H = Fo(RECTANGLEself),
< action>

if H=nil then conclude(nil)
else conclude(make-instance(RECTANGULAR-HOUSE,/-)).

This rule indicates that a RECTANGULAR-HOUSE instance can be created
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if a RECTANGLE instance which satisfies the attributes specified by F0 is

created.

As discussed in Section 4.4.4, the Action Scheduler (AS) marks the non-

primitive composite hypothesis as partially processed and inserts it into the

iconic/symbolic database. The AS also marks the situation selected as uncon-

cluded. Partially processed hypotheses and unconcluded situations are pro-

cessed by other modules of the HLVS in the following ways:

(1) If a situation, say S, is marked as "unconcluded", then all the situations in
the situation lattice which are less than S are also marked as unconcluded.
The focus of attention mechanism does not select any unconcluded situation.
This strategy is based on the observation that if no conclusion can be drawn
from the analysis of a situation, say S, then the analysis of all the situations
which are "less than" S (i.e., composed of a subset of the instances of S) can
be postponed.

For example, by marking situation N 0 in Figure 4-6 as unconcluded, all
the situations that are less than N 10 are also marked as unconcluded (i.e.,
NHj, I < i< 3).

(2) The function "conclude" indicates that a solution, say I,,,, has been com-
puted for an unconcluded situation, say S. Whenever this function is
evaluated, the HLVS schedules S as the situation to be selected in the next
iteration cycle and the solution proposed for the composite hypothesis of this
situation is Io,.

(3) Since a partially processed hypothesis, say H, is the composite hypothesis
constructed for some unconcluded situation, S, H should not participate in the
formation of new situations with any DE's in the P-set of S. HLVS uses the
more efficient strategy of not allowing a partially processed hypotheses to par-
ticipate in the formation of any situations.

(4) In the hypothesis generation process, only the rules which describe the
decomposition strategy can be evaluated for partially processed hypotheses.
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All the hypotheses generated are inserted into the iconic/symbolic database.

(5) The removal of a partially processed hypothesis from the iconic/symbolic
database causes the removal of all the hypotheses in the database which are
generated by the decomposition strategy.

Suppose, for example, that the situation N 0 shown in Figure 4-6 is

selected by the focus of attention mechanism and the composite hypothesis

constructed, say CH,, is:

target object : RECTANGULAR-HOUSE;

Since RECTANGULAR-HOUSE is not a primitive frame, the SC returns CHa

as the solution to the situation N10 . The AS marks N 10 as unconcluded and

inserts CH. into the iconic/symbolic database.

-At the subsequent hypothesis generation process, CHa activates the rule

Rfirt-order-propertie, in the RECTANGULAR-HOUSE frame and creates

hypothesis H:

target object : RECTANGLE;

Figure 4-7 shows the relation between CH, and H9 and the action which is

delayed by H. The resulting situation lattice is shown in Figure 4-8.

Suppose a RECTANGLE instance, say IR, is proposed to H9 by the SG.

The AS evaluates the action whose cause of delay is H9 and:
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(1) creates a RECTANGULAR-HOUSE instance, say IRH,

(2) evaluates the function "conclude".

The evaluation of the function "conclude" indicates to the HLVS that situa-

tion N10 is to be scheduled in the next iteration cycle and the solution pro-

posed for CH, is IRH.

At the next iteration, the SG proposes IRH to the hypotheses in the P-set

of N 10 (i.e., H1, H2, H3). Those actions whose causes of delay are H1, H2, and

H3 are now evaluated by the Action Scheduler. Suppose H1, H2, and H3 are

removed after the evaluation of these actions. Figure 4-9 shows the resulting

situation lattice. Note that this is usually the case when an appropriate solu-

tion is proposed to the hypotheses.

The processing of partially processed hypotheses and unconcluded sitia-

tions are summarized in Table 4-2.

4.5. A taxonomy of actions

In this section, we discuss a taxonomy of the actions that are often used

to specify the scene domain knowledge. The term action in this section refers

to the activities described in the <action> part of a rule.

One type of action is the filling in of attributes of an instance. For

example, a rule in the HOUSE-GROUP frame is:
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Table 4-2. Summary.

Unconcluded situation:
- Will not be selected by the focus of attention mechanism.
- If a solution is proposed by the SG for some unconcluded situation,
the HLVS schedules that situation in the next iteration cycle.

Partially processed hypothesis:
- A composite hypothesis for some unconcluded situation.
- Recorded in the iconic/symbolic database.
- Does not participate in the formation of any situations.
- Removal of a partially processed hypothesis, H, causes the removal of
all the hypotheses generated by H.

<control-condition> : true
<hypothesis> : H ! AR(self,ROAD),
<action> : self.along-road = H.

This rule specifies that if a ROAD instance which satisfies H is found, fill it in

the slot "along-road" of the HOUSE-GROUP instance.

Iii addition to filling in attributes, actions often create new instances or

unify several instances (as described in Section 4.4.1). Such actions are

described by two functions:

"make-instance" : create an instance and insert it into the iconic/symbolic
database;
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- "unify-instance" unify a list of instances in the iconic/symbolic database
into a single instance.

For example, a rule in the RECTANGLE frame is:

< control-condition> : IS-RECT-HOUSE(self)
<hypothesis> : nil,
<action>

make-instance(RECTANGULAR-HOUSE,F(self)).

This rule describes the following piece of knowledge:

"If a RECTANGLE instance which satisfies the IS-RECT-HOUSE criteria is
created, then create a RECTANGULAR-HOUSE instance using function F
and insert it into the iconic/symbolic database."

Similarly, the following piece of knowledge:

"If more than one HOUSE-GROUP instance is filled in the "belongs-to" slot
of a HOUSE instance, replace it by another HOUSE-GROUP instance which
is created by the function COMBINE-H."

can be described by the following rule in the HOUSE frame:

< control-condition>
if number-of-elements(self.belongs-to) > 1,

<hypothesis> : nil,
< action > :

unify-instance(self.belongs-to,COMBINE-H(self.belongs-
to)).
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Another class of actions deals with the removal of hypotheses and the

updating of the attributes of hypotheses. Usually, hypotheses are removed by

the Action Scheduler after the Solution Generator proposes solutions to them.

However, instead of always removing hypotheses when no acceptable solution

is found, we may want to update the attributes of the original hypotheses

when more information is available. The function "update" is used to describe

the updating of the attributes of a hypothesis.

For example, consider the following rule:

<control-condition>
<hypothesis> : H = F(self)
< action >

if H - nil then update(H, CS1)
else ...

The action specifies that if the solution proposed.for H is nil, then the AS

replaces some attributes of hypothesis H by CS. However, H is not removed

from the iconic/symbolic database. The <action> part is inserted again into

the action list (its cause of delay is H.)

There is yet another category of actions which specifies the constraints

on the evaluation of multiple rules. We describe this type by an example.

Any instance of a HOUSE-GROUP frame can be "along" at most one

ROAD instance. Given a HOUSE-GROUP instance, say IG, we may not yet

know the location of the road along IHG ,i.e., at location F or at location F,

(see Figure 4-10). One strategy is to create hypotheses about a ROAD at
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both locations. However, once one hypothesis is verified, the other hypothesis

must be removed.

The above knowledge is represented as follows:

Rule R 1.
<control-condition> : true,
<hypothesis> :H 1 -= F(self),
<action> : self.along-road ==-/1,

Rule R 2.
<control-condition> : true
<hypothesis> : H2 = F,(self),
<action> : self.along-road = H2.

In addition, the following rule for the HOUSE-GROUP frame constrains the

simultaneous evaluation of RI,R 2:

Rule Rcontrol.

<control-condition>
not-null(anyone(R1 ,R2)),

<hypothesis> : nil,
< action >

remove-all(anyone(R 1 ,R2)).

where anyone(R 1,R2)=
if is-evaluated(R1 ) then R2
else if is-evaluated(R 2) then R1
else nil

The above rule specifies that whenever one of the <action> parts of the

rules R, or R2 is evaluated, rule Rcontrot is evaluated which causes the removal

of all the hypotheses that are created by the evaluation of Rl.<hypothesis>
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or R2. < hypothesis>.

Suppose a HOUSE-GROUP instance is created. The instance activates

rules R, and R2 and generates two hypotheses about the ROAD object.

Whenever the SG proposes a ROAD instance to one of the hypotheses, the AS

evaluates one of the delayed actions, and causes the removal of the other

hypothesis.

We summarize the actions discussed in this section in Table 4-3.

4.6. Pursuing alternative hypotheses

It is possible that several hypotheses nay be generated at the same time.

This can be represented as the following rule:

Table 4-3. A taxonomy of actions

Action Type Example
Attributes Filling in of attributes in an instance.
Instances Create instances.

Unify instances.
Hypotheses Remove hypotheses.

Update hypotheses.

Rules Constrain the simultaneous evaluation
of several rules.
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if <control-condition> then
< hypothesis 1 > < action 1 >

or
< hypothesis 2 > < action 2 >

or <hypothesis n> <action n>

Whenever <control-condition> evaluates to true, all of the <hypothesis>s

can be generated. These hypotheses are called alternative hypotheses and we

assume that at most one of the hypotheses is in fact true. However, it is

difficult to decide which one should be pursued first, since a promising selec-

tion may turned out to be incorrect as new facts (generated by resegmenta-

tion) are obtained.

In SIGMA, all the alternative hypotheses are generated and participate in

the hypothesis integration process. However, the associated actions of these

alternative hypotheses are not evaluated (put in the delayed-action queue).

When any one of the alternative hypotheses is verified, it is left to the associ-

ated action to decide whether other alternative hypotheses should be pruned.

On the one hand, this strategy allows multiple alternative hypotheses to be

pursued simultaneously. On the other hand, expert domain knowledge, which

can be described in a rule, can be used to prune unpromising hypotheses when

enough facts are known.
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4.7. The selection of good interpretations

Potentially, SIGMA could construct all possible interpretations for the

image. It is natural to require that no region be interpreted as two different

objects in the scene model. However, in SIGMA, a region may be interpreted

as several objects (e.g., an elongated region might be interpreted both as a

road or a driveway). Intersecting image structures may be used to construct

DE's whose iconic descriptions should never intersect. A pair of DE's whose

iconic descriptions intersect while the scene model specifies otherwise are

called conflicting DE's. The associated interpretations are called alternative

interpretations.

For a set of conflicting DE 's, we need to select a DE which "best" inter-

prets the image. It is possible to design an algorithm to select such "best"

interpretations. However, we did not investigate this issue in SIGMA.

Instead, we model the final selection process as a database query answering

process. A program (QAM) was developed to answer simple queries about

DE's in the interpretation network and to display the iconic descriptions of

the DE's selected.
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5. Examples

5.1. Introduction

This section presents detailed examples of the application of SIGMA to

the analysis of a high resolution aerial image to locate houses, roads, and

driveways in a suburban scene.

Ve first present an example of the initial segmentation process. Then we

discuss how the HLVS analyzes the image in several typical situations.

Finally, we show the results of analysis by SIGMA on an aerial image.

5.2. Initial segmentation

The image used in the example is a 250 * 140 window of an aerial image

(Figure 5-1) with intensities in the range of 0 to 63. The scene contains

houses, roads, and driveways.

5.2.1. Initial segmentation goals

We want to locate houses and roads in the image. Since their appear-

ances are either compact rectangles or elongated rectangles, and they are usu-

ally brighter than the background, the following hypotheses are used as the I-

set of the initial segmentation process:
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/* extract compact and bright rectangles *1
hypothesis Hblob"

" target object = rectangle,
in-window = whole image,
rectangle.elongatedness < 10,
rectangle.compactness < 18,
rectangle.region-contrast > 3,
180 < rectangle.area-of < 360.

/* extract bright and elongated rectangles */
hypothesis Hribbon:

target object = rectangle,
in-window = whole image,
8 < rectangle.width < 20
rectangle.elongatedness > 10,
rectangle.length > 10,
rectangle.compactness > 18,
rectangle.region-contrast > 3.

5.2.2. Verifying hypothesis Hblob

The Initial Segmentation Controller (ISC) first selects hypothesis Hblob.

The ISC activates the LLVS to compute image primitives that satisfy

hypothesis Hb60 b. The LLVS selects the following segmentation operators

arranged in descending order of their priorities as follows:

Blob finder
Upper threshold method

The Ribbon finder and the Lower threshold method are not selected since

their selection criteria evaluate to false.
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The LLVS activates the Blob finder first. The Blob finder first convolves

the original image with a Laplacian operator. Then it computes the posiLive

connected regions in the convolved image (Figure 5-2). The regions computed

by the Blob finder which satisfy the constraints of Hblob are shown in Figure

5-3.

Since the set of results computed by the Blob finder is not empty, the

LLVS returns the computed regions to the HLVS. The Upper threshold

method is not evaluated.

5.2.3. Verifying hypothesis Hribbn

The ISC then selects hypothesis Hjibb on. The ISC activates the LLVS to

compute regions which satisfy hypothesis Hribbon. The segmentation operators

selected by the LLVS for this task arranged in descending order of their prior-

ities are as follows:

Ribbon finder
Upper threshold method

The Blob finder and the Lower threshold method are not selected since their

selection criteria evaluate to false.

The LLVS activates the Ribbon finder first. The Ribbon finder first com-

putes the skeletons of the positive regions shown in Figure 5-2. The resulting

skeletons are shown in Figure 5-4.
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Finally, the Ribbon finder decomposes these skeletons and computes the

skeletons for the ribbons. Figure 5-5 shows the skeletons of the ribbons corn-
p.

V puted by the Ribbon finder which satisfy the constraints of hypothesis Hb66n.

Since the set of results computed by the Ribbon finder is not empty, the

LLVS returns the computed regions to the HLVS. The Upper threshold

method is not evaluated.

5.2.4. Generating instances

The ISC collects the results computed by the LLVS, creates RECTAN-

GLE instances, and inserts them into the iconic/symbolic database.

There are 26 RECTANGLE instances created at this stage. Figure 5-6

shows the iconic descriptions of these instances. Note that some of the

instances intersect.

5.3. Constructing partial interpretations

A situation is classified into one of the following classes based on how the

Solution Generator computes its proposed solution:

Case 1: The SG discovers an existing instance in the iconic/symbolic database

which satisfies the given composite hypothesis.

Cast 2: The SG cannot find any instance in the iconic/symbolic database

which satisfies the given composite hypotheses. The composite hypothesis is

non-primitive.
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Case 3: The SG cannot find any instance in the iconic/symbolic database

which satisfies the given composite hypothesis. The composite hypothesis is

primitive.

Case 4: The SG obtains the solution from the previous iteration (i.e., the solu-

tion for an unconcluded situation is now computed.)

5.3.1. Case 1--Discovering an existing instance

Consider the situation shown in Figure 5-7. The relations between the

DE's shown in this figure are described in Table 5-1.

Figure 5-8 shows the portion of the interpretation-network which is

related to this situation.

Assume the focus of attention mechanism selects situation S1 whose P-

set is as follows:

I DEi,DE3,DEI}

Suppose the composite hypothesis, say CHa, computed for S1 is

target object = ROAD,

Since the P-set of the situation S, contains an instance, DE, the SG proposes

it as the solution to the composite hypothesis constructed for this situation.
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The AS activates those actions whose causes of del are DE and DE3 respec-

tively. Figure 5-0 shows the resulting interpretation network. Note that

hypotheses DE2 and DE4 are removed. This is caused by a control rule in the

HOUSE-GROUP frame which specifies that each HOUSE-GROUP instance

can be along at most one road.

5.3.2. Case 2--Decomposing a hypothesis

Consider the situation shown in Figure 5-10. The relations between the

DE's shown in this figure are described in Table 5-2.

Figure 5-11 shows a portion of the interpretation network related to this

situation.

Assume the focus of attention mechanism selects the situation S1 whose

P-set is

DELDE2}.

Assume the composite hypothesis, say CH,, computed for S1 is

target object = DRIVEWAY,

The SG cannot find any existing instance that satisfies CH,. Since CH. is

non-primitive, the AS marks it as partially processed and inserts it into the
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iconic/symbolic database.

At the subsequent iterations, CH. activates the rule Rfirst-order-properties of

frame DRIVEWAY to generate hypothesis DE3:

databaseentity DE3:
target object : RECTANGLE,

end-database-entity.

Suppose the action which is delayed by DE3 is Afirst-order-propertiea. We will

revisit this example in Section 5.3.4. Note that DE3 can participate in the

formation of situations with other DE's in the iconic/symbolic database. Fig-

ure 5-12 shows the resulting interpretation network after DE 3 and CH a are

inserted into the iconic/symbolic database. Note that CH a is marked as par-

tially processed hypothesis. Table 5-3 summarizes the relations between the

DE's, action Afirst-order-properties, and S1.

5.3.3. Case 3--Directing the segmentation

Suppose the composite hypothesis, say CHa, given to the SG is primitive.

The SG activates the LLVS to compute regions which satisfy the constraints

provided by the SG. The regions computed by the LLVS are used by the SG

to create RECTANGLE instances. The SG then proposes those created

instances which satisfy the constraints of CH, as solutions. If no instance is

computed, the SG proposes nil as the solution. We illustrate the process used
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by our system in the following two examples.

Suppose the composite hypothesis, say CH,, given to the SG is:

target object = RECTANGLE,
in window: WI,

rectangle.elongatedness < 10,
rectangle.compactness < 18,
275 < rectangle.area-of < 325.

The window I 1 is shown in Figure 5-13.

The LLVS first activates the Blob finder and fails to compute any region.

Then the LLVS activates the Upper threshold method to compute regions. A

region is successfully computed by setting the threshold value at 24. Figure

5-14 shows some of the intermediate results of the segmentation process. The

measurements (the area and the compactness of a region) are shown for the

largest region extracted at each specified threshold value.

The LLVS returns the computed region to the SG. The SG checks the

features of the region and creates a RECTANGLE instance DERECT and pro-

pose it as the solution. Figure 5-15 shows the RECTANGLE instance created

by the SG.

Suppose the composite hypothesis CH, is again given to the SG. How-

ever, the window W1 is as shown in Figure 5-16.

The LLVS activates the Blob finder, the Upper threshold method, and

the Lower threshold method and cannot compute any region which satisfies
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the given constraints. The LLVS returns "nil" to the SG. The SG then pro-

poses nil as the solution.

5.3.4. Case 4--Analyzing an unconcluded situation

Consider the interpretation netaork shown in Figure 5-12. Suppose that

at some other iteration the SG computes a solution, say I0, for DE3. Action

Afirat-order-propertiea is now evaluated by the AS.

Two possible outcomes can be produced by the evaluation of

Afirat-order-propertia. First, the evaluation of action Afirdtorder-propertie. generates

a solution, say I, for CH. This causes the HLVS to analyze the unconcluded

situation S1 in the next iteration. The SG will propose I, as the solution to

CH., the composite hypothesis of S1.

Figure 5-17 shows the resulting interpretation network in this case. The

unconcluded situation S 1, the partially processed hypothesis CHa, and the

hypothesis DE3 generated by the "decomposition method" are all removed.

Second, suppose no solution is generated by the evaluation of

Afirst.ordertproperties. Instead, the evaluation cause changes to be made to the

attributes of DE3. In this case, situation S1 is removed from the situation lat-

tice and new situations are constructed. Suppose DE3 , is the updated

hypothesis. Figure 5-18 shows the resulting interpretation network in this

case.
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5.4. A complete example

In this section, we present the result of applying our image interpretation

program to the image shown in Figure 5-1. No explicit goal is given to the

system. The analysis terminates when all the hypotheses created are verified

or refuted.

Figure 5-6 shows the RECTANGLE instances generated by the initial

segmentation process. Figure 5-19 shows those RECTANGLE instances

which are interpreted as RECTANGULAR-HOUSE instances (requiring that

200<rectangle.area-of<400) , and Figure 5-20 shows those RECTANGLE

instance which are interpreted as VISIBLE-ROAD-PlECE instances (requiring

that 6<rectangle.width<12). No RECTANGLE instances are interpreted as

DRIVEWAY instances.

Instead of showing the processing of each situation by the program, we

show only the processing of several interesting situations.

In the scene model, two HOUSE-GROUP instances are identical if they

both share a common HOUSE instance and should be unified to a single

instance. Figure 5-21(a) shows such an example. Let P and P2 denote two

HOUSE instances, R, and R 2 two HOUSE-GROUP instances, and DE a

HOUSE hypothesis.

Each HOUSE-GROUP instance creates hypotheses about more houses

that belong to it. The process to unify the house groups is as follows:
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(1) The situation whose P-set is

{ DEI,P21

is selected by the focus of attention mechanism.

(2) SG proposes HOUSE instance P 2 as the solution to the composite
hypothesis of situation S1. The evaluation of the action which is delayed by
DE1 fills P 2 in the "contains" slot of HOUSE-GROUP instance R1.

(3) Since P, "belongs to" two HOUSE-GROUP instances at the subsequent
iteration, the evaluation of a rule in HOUSE frame unifies R1 and R 2.

Let us denote the resulting HOUSE-GROUP instance by R1. Figure 5-22

shows the result of the analysis.

Figure 5-23 shows another example. Resegmentation of the image is

required in this example. Let Ri denote a HOUSE-GROUP instance, Pi a

HOUSE instance, DE a HOUSE hypothesis. Also let CHI denote a partially

processed hypothesis, and T1 a RECTANGLE instance. These DE's are not

shown in Figure 5-23. They are used later in this example.

The processes to activates the LLVS to process the image are as follows:

(1) Situation S, whose P-set is

(DEDE}

is selected. Since the composite hypothesis (target object is HOUSE object) is
non-primitive, a partially processed hypothesis, say CHI, is generated.
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(2) At the next iteration, the evaluation of the rule Rpecialization-strategy of the
HOUSE frame generates a hypothesis DE S whose target object is
RECTANGULAR-HOUSE (Figure 5-24(a)).

(3) Situation S2 whose P-set contains DE5 is selected. Again, a partially-
processed hypothesis, say CH2, about RECTANGULAR-HOUSE is generated.

(4) At the following iteration, the evaluation of the rule Rfirst-orderproperties of
RECTANGULAR-HOUSE frame generates a hypothesis DE6 whose target
object is RECTANGLE (Figure 5-24(b)).

(5) The SG activates the LLVS to segment the image. A region is computed
by the LLVS (see Figures 5-13, 14, 15). The SG creates a RECTANGLE
instance T 1.

(6) The evaluation of the <action> of Rfirst-order-properties creates a
RECTANGULAR-HOUSE instance P 4. Since a solution is now ready for the
unconcluded situation S2, the HLVS schedules it to be processed next. After-
wards, since a solution is now ready for the unconcluded situation S1, the
HLVS schedules it to be processed next. Now, the actions delayed by DE1
and DE3 can be evaluated. The resulting interpretation network is shown in
Figure 5-24(c).

(7) P 4 "belongs to" two HOUSE-GROUP instances. At the subsequent itera-
tion, the evaluation of a rule in the HOUSE frame unifies R, and R 2.

Figure 5-25 shows the resulting HOUSE-GROUP instance.

In the scene model, every ROAD instance is smoothly extended from one

ROAD-TERMINATOR instance to another ROAD-TERMINATOR instance.

A ROAD-TERMINATOR is defined to be the boundary of the image. We

present an example in the following paragraphs.
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The extension of ROAD instances is similar to the merging of two

HOUSE-GROUP instances discussed above. Figure 5-26 shows two ROAD

instances R1 and R 2. P and P2 are two ROAD-PIECE instances. DE denotes

a ROAD-PIECE hypothesis. The extending of ROAD instance R1 activates

the merging of R1 and R 2 into one ROAD instance (Figure 5-27).

Figure 5-28 shows another case. R1 and R2 are two ROAD instances. DE,

is a ROAD-PIECE hypothesis generated by R 1. Since R2 is not "connected"

to R 1, hypothesis DE1 is modified as shown in Figure 5-29.

Figure 5-30 shows yet another case. Road instance R1 cannot be extended

any longer. When this is detected, the original ROAD-PIECE hypothesis is

removed and a ROAD-TERMINATOR hypothesis is generated.

Figure 5-31 shows another example. Let DE, denote a ROAD instance,

DEh a HOUSE instance, DEe a RECTANGLE instance, and DE a DRIVE-

WAY hypothesis. House instance DEh and ROAD instance DEr create

hypotheses DE, and DE2 about the DRIVEWAY object respectively. There is

no DRIVEWAY instance in the iconic/symbolic database which satisfies these

hypotheses. However, there is a RECTANGLE instance, DEr, which, if inter-

preted as a DRIVEWAY object, would satisfy these hypotheses. Note that

DEe is not interpreted as a DRIVEWAY object, a VISIBLE-ROAD-PIECE,

or a RECTANGULAR-HOUSE since there are not enough distinguishing

features of DEre to make these interpretations.
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The HLVS performs the analysis as follows:

(1) A composite hypothesis, CH, is first constructed for the situation whose
P-set is

{DEDE2 }.

(2) A hypothesis, DE 3, about the RECTANGLE object is created by the com-
posite hypothesis CH1 .

(3) DE, satisfies DE3. A DRIVEWAY instance DEdr is created by the
<action> part of the rule Rfirat-order-properties of the DRIVEWAY frame. The
DRIVEWAY instance DEdr satisfies both DE1 and DE2. Figure 5-32 shows the
resulting interpretation network after DE1 and DE2 are removed.

The resulting interpretation network is shown in Figure 5-33. The iconic

descriptions of the instances created during the analysis are shown in Figures

5-34 and 5-35.

Finally, we present two examples of the final selection stage of the pro-

gram. Figure 5-36(a) shows a ROAD instance whose length is longer than 100.

Instances of related objects are shown in Figure 5-36(b),(c), and(d).

Figure 5-37(a) shows a HOUSE-GROUP instance with more than four

houses. Instances of related objects are shown in Figure 5-37(b) and (c).
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6. Conclusions

This paper has described a model for the development of image under-

standing systems that involves representing scene domain knowledge using

frames and controlling the actions of the system by hypothesis integration.

Using such a framework, we developed a flexible image understanding system

called SIGMA which performs both top-down(goal-oriented) image analysis

and bottom-up construction of composite image structures, and demonstrated

the system's performance on an aerial image of a suburban scene.

Developing computer systems for visual applications is one way to inves-

tigate how humans see, and also to make computers more useful. As pointed

out by many researchers [Hall79], [Binf82j, ima, analysis systems usually

consist of several types of modules: low level vision modules(e.g., segmenta-

tion) and high level vision modules(e.g., matching, inference). This research

leads to the conclusion that a powerful vision system should rely on a balance

of performance between these two types of modules. The low level modules

should provide descriptive information about the image to the high level

modules and the high level modules should provide "hints" about image

structures to the low level modules. This research is only a small step toward

the construction of general vision systems.
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Figure 1-1. Mappings between the scene and the image.
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Figure 1-2. System architecture fir the SIGMA image

understanding system.



frame RECTANGULAR-HOUSE;rules:
FMcetaIxgf.

links:
AKO: HOUSE;

end -frame

frame L-SHAPED-HOUSE;
rules:

AKO : HOUSE;
end -frame

frame HOUSE;
slots:

centroid;
shape-description;
front-of-house;
connecting-driveway;

rules:

link. ,
CAN-BE :RECTANGULAR-HOUSE, L-
SHAPED-HOUSE;

end-frame

Figure 2-1 Frame definitions for HOUSE, RECTANGULAR-HOUSE,
and L-SHAPED-HOUSE.

J/ Links:

AKO : -

fi5 MPM CAN-BE:--

figure 2-2 Links between HOUSE, RECTANGULAR-HOUSE
and L-SHAPED-HOUSE frames.
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Figure 2-3 A model of a suburban housing development.
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Figure 2-4. Pictorial description of house-road relation.

REL(0 1P02)?

pictorial entity-i pictouial entity-2

extract

image,

Figure 3-1. Using a relation as a constraint.
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Figure 3-2(a). The situation lattice before the insertion.

iconic descriptions situation lattice

Hgure 3-2(b). The situation lattice after the insertion.
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Figure 3-3. The situation lattice after the removal of A.
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Figure 4-3. The schematic diagram of the interpretation stage.
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containing H 0 is created about possible house in
HGo

Figure 4-4(a). Reasoning steps for constructing HG0 *

HG). HG). HG).

/

i HHi HO Hi

a house group instance generate hypothesis fill H0 in instance HG1
containing H, is created about possible house in

HGI

Figure 4-4(b). Reasoning steps for constructing HGI.
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Figure 4-5. Unification of identical instances.

NiO Nil
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Hi H2 H3 H4 HS H6 H7 HS

Figure 4-6. A situation lattice.
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Target object of CH.:
RECTANGULAR-HOUSE

Target object of H0 :
RECTANGLE

Delayed-action:
if H=nil then conclude(nil)
else conclude(make-instane(RECTANGLE-HOUSE,H)).

Figure 4-7. Decomposition of CHa ,

**
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*ii* * *Ni N2 N 4 NS N N7 Ne N9

Hl, H2 H3 H4 115 H16 H7 He

Legend:

unconcluded situation: ()
partially processed hypotesis(

Figure 4-8. The resulting situation lattice.
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Figure 4-9. The situation lattice after actions are evaluated.
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Figure 4-10. Possible road locations along I HG'
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Figure 5-1. An aerial image.

Figure s-2. Posit\; r j 1 r Blobs extracted by
regions. oDIa-finder.
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Figure 5-4. Skeletons of the Figure 5-5. Skeletons of the ribbons
connected components. extracted by Ribbon-finder.

Figure 5-6. Iconic descriptions of the RECTANGLE instances generated
based on the initial segmentation process.
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DE
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,4_1

FFigure b-7(b). A depiction of the
SFigure 5-7(a). An example (see situation.

Section b.3.1.)

DE's Type Generate"-by
DE, ROAD instance
DEA 1_ HOUSE-GROUP instance
DEI2 _HOUSE-GROUP instance
DE, ROAD hypothesis DE_I

DE 2  ROAD hypothesis DE

DE3  ROAD hypothesis DE 2
DE4  ,ROAD hypothesis DE&2

Table 5-1. The descriptions of the DE's.
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Figure 5-8. Portion of the interpretation network related to the situation.

DE 2

DEE

Figure 5-9. Resulting interpretation network.
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Figure 5-10(b). A depiction of the
Figure 5-10(a). An example (see situation.
Section 5.3.2.)

DE's Type Generated-by
ROAD instance

DE, HOUSE instance

DE, DRIVEWAY hypothesis DE,
DE 2 DRIVEWAY hypothesis DE,

Table 5-2. The descriptions of the DE's.
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Figure 5-11. Portion of the Figure 5-12. Resulting interpretation
interpretation related to the network.
situation.

I Action ICause-of-dely
A DEj

IUnconcluded-situation I Commosite b h esis s

Table 5-3. Relations between the DE's, action A first-order-properties'

and V



Figure 5-13. A window generated by the HLVS.

Figure 5-14. Intermediate results of the LLVS.



Figure 5-15. The RECTANGLE instance generated by the HLVS (based on
the results computed by the LLVS).

Figure 5-16. Another window g,.nerated by the HLVS.
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*Figure 5-17. Resulting interpretation Figure b-18. Resulting interpretation
network (when a solution has been network (when no solution has been
generated). computed).

Figure 5-19. initial set of RECTANGULAR-HOUSE instances.



Figure t6-20. Initial set of VISIBLE-ROAD-PIECE instances.
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Figure -21(a). Two HOUSE-GROUP Figure 5-21(b). Portion of the interpretation
instances (see Section 5-4). network related to the situation.
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Figure 5-22(a) Resulting HOUSE-GROUP Figure 5-22(b). Hypotheses generated
instance R by R.
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2

~DE P 'PE'kDE' P DE
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Figure 5-23(a). Two HOUSE-GROUP Figure 5-23(b). Portion of the interpretation
instances (see Section 5-4). network related to the situation.



R R

5-24(a).
P, DIE 4DE ~ P (DE',,DE2,) 1 2 ~1) 3

5-24(b) A D6~ P ~DE'
(DE P P I DE ,3 3 \..4

\2y 1 2

CH

~DE'

R R

J)E P 2P 4 (DE

'--4

5 -'24(c)

1igure 6-24. Snapshots of the interpretation network related to Rand R,

(see H-gure 5-23) at various stages of the processing.
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Figure 5-25(a). Resulting HOUSE-GROUP Figure 5-25(b) Resulting interpretation
instance, network.

PDE2  P I DE) PD

Figure 5-26(a). Two ROAD instances Figure 5-26(b). Portion of the inter-
(see Section 5-4). pretation network related to the situation~
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Figure 5-27(a). Resulting ROAD Figure 5-27(b). Resulting interpretation
instance. network.

DE

R1  I R2
1F2

Figure 5-28(a). Two ROAD instances Figure 5-28(b). A depiction of the
(see Section 5-4). situation.
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Figure 5-29. Hypothesis DE1 has been modified.
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* Figure 5-30. A ROAD-TERMINATOR hypothesis has been generated.
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Figure 5-31. Iconic description of a situation and its interpretationnetwork (see Section 5-4).

Figure 5-32. Resulting interpretation network.
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Figure 5-34. Final results.

Figure 5-35. Final results (cont.).
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Figure b-36. Explanation of a ROAD instance.

Figure 5-37. Explanation of a HOUSE GROUP instance.



FILMED

1-85

DTIC
-Z


